Title : Optimal feature subset selection for pattern classification and recognition of multichannel eeg data using spectral entropy as a complexity measure applications to alcoholic and sleep eeg data

Type of Material: Thesis
Title: Optimal feature subset selection for pattern classification and recognition of multichannel eeg data using spectral entropy as a complexity measure applications to alcoholic and sleep eeg data
Researcher: Padma, T K
Guide: Sriraam, N
Publisher: Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya
Place: Kanchipuram
Language: English
Dissertation/Thesis Note: PhD
Fulltext: Shodhganga

00000000ntm a2200000ua 4500
001415917
003IN-AhILN
0052018-08-14 11:55:40
008__180814t####||||ii#||||g|m||||||||||eng||
035__|a(IN-AhILN)th_415917
040__|aCSMK_631561|dIN-AhILN
041__|aeng
100__|aPadma, T K|eResearcher
245__|aOptimal feature subset selection for pattern classification and recognition of multichannel eeg data using spectral entropy as a complexity measure applications to alcoholic and sleep eeg data
260__|aKanchipuram|bSri Chandrasekharendra Saraswathi Viswa Mahavidyalaya
502__|bPhD
700__|aSriraam, N|eGuide
856__|uhttp://shodhganga.inflibnet.ac.in/handle/10603/183985|yShodhganga
905__|anotification

User Feedback Comes Under This section.